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SUMMARY

This paper reports on aspects of the design and philosophy of the Ecotron, an integrated series of 16
controlled environmental chambers at the NERC Centre for Population Biology. The Ecotron serves as
an experimental means for analysing population and community dynamics and ecosystem processes
under controlled physical conditions. Within the chambers, terrestrial experimental communities are
assembled into foodwebs of desired complexity from a pool of species selected for their preadaptations to
the physical conditions of the Ecotron. These species include decomposers (earthworms, snails,
microarthropods and microbes), primary producers (16 species of plants), primary consumers (four
species of herbivorous arthropods), and secondary consumers (four species of parasitoids).

The design of the Ecotron is unique in several aspects with respect to its blend of biology and
technology. It supports small, dynamic communities of up to 30 plant and metazoan species, thereby
making it among the more biologically complex controlled environmental systems currently in use. Its
architecture permits replication and variation of spatial scale in experimental design. Its artificial
climate simulates natural environmental conditions within chambers allowing experimental control over
light, water, temperature, humidity, and in the near future CO; and uv-B radiation. Sensors monitor
both macro- and micro-environmental conditions of a number of physical factors within the chambers.

Preliminary experiments show the Ecotron to be an excellent facility for long-term population and
community-level experiments. We discuss the results of one of these early experiments and briefly
consider ongoing and future experiments.

conception, through consultation, design, and con-

1. INTRODUCTION p .. LS.
struction to proven functioning, and it is still under-
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Recent rapid increases in the sophistication of ecologi-
cal experiments have paved the way for attempts to
study the population dynamics and ecosystem pro-
cesses of an entire community under specified environ-
mental conditions. (In this paper we use the term
‘ecosystem’ as defined by Odum (1971) to mean a
community of organisms plus the physical and chemi-
cal environments with which the community inter-
acts.) Such an attempt is being conducted by the
Natural Environment Research Council (NERC)
Centre for Population Biology as part of its overall
research programme into the ecology of populations
and communities. These whole-community studies are
being conducted in the Ecotron, a system of 16
physically and electronically integrated environmen-
tal chambers.

This major facility took three and a half years from

* Order of authorship is alphabetical after third author.
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going development and improvement with experience.
In total, the facility and its machinery occupies
approximately 200 m? and two levels of a building
(figure 1).

The Ecotron is unique among controlled environ-
mental facilities (cEFs) in that it attempts to construct,
maintain and manipulate entire model ecosystems and
simultaneously monitor population dynamics and eco-
system processes. Outdoor cEkFs typically examine
intact communities (see, for example, Rogers et al.
1983; Drake et al. 1989; Hendrey & Kimball 1990;
Strain et al. 1991; Oechel et al. 1992). Such systems
allow measurement of the effect of changing physical
conditions on natural communities, but because com-
munity structure is not manipulated in these systems
they provide little insight into the importance of this
structure in determining ecosystem responses. Indoor
cEFs typically focus on the response of one or a few
species to environmental change (see, for example,
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Figure 1. The Ecotron. Anticlockwise, from top, left; view of one bank of Ecotron units; view of vegetation in an
ccosystem container from an early experiment; internal view of an Ecotron unit prior to loading an ecosystem

container.

Bazzaz & Carlson 1984; Grime el al. 1987; Fajer et al.
1989; Lechowicz & Romer 1990; Korner & Arnone
1992), but such studies generally lack the complexity
of real systems. They have low biodiversity (see
Ecological considerations. (d). Biodiversity, below);
lack a decomposer fauna; generally have only one or
at most two trophic levels; and the plants within them
usually have no population dynamics, i.e. no seedling
establishment or turnover of individuals. The Ecotron
can examine and manipulate relative abundances of
up to 30 species of terrestrial plants and metazoans
among four trophic levels, over several generations.
This paper describes the ecological basis for the
construction of the Ecotron, its technological features,
and its programme of experimental investigation. It is
intended to serve as a report for those constructing
similar devices, as a reference for future Ecotron
rescarch, and to provide a summary of our discoveries
thus far in the construction and use of the facility.
Ongoing and future research are briefly outlined.

2. ECOLOGICAL MOTIVATIONS

For historical reasons, ecology has been a collective of

Phil. Trans. R. Soc. Lond. B (1993)

related but separate disciplines each with overlapping
agendas. Unification of these separate disciplines and
agendas, in particular population and ecosystem eco-
logy, was inevitable, but increasing scientific and
public interest in global change has recently hastened
the process (see, for example, Lubchenco et al. 1991).
The Ecotron is an example of this process of unifica-
tion in that it combines the methodologies developed
in several ecological subdisciplines to examine whole-
community response to environmental change in a
single experimental system.

The impetus for the NERC Centre for Population
Biology’s research programme, and the construction of
the Ecotron in particular, stems from current trends in
both basic and applied ecology. From the standpoint
of basic research, the community remains the most
difficult level at which to investigate ecological issues
because of its complexity. Central issues such as the
relative roles of biotic against abiotic processes in
structuring communities, the determinants of commu-
nity diversity, the stability of communities, the impor-
tance of historical factors in determining distribution
and abundance, and the assembly rules of foodwebs
have been the focus of much research in basic ecology,
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but still remain largely unresolved. Although there
was a sense of progress towards resolution of some of
these issues in the 1960s (see papers in Cody &
Diamond 1975), much of that progress has been
recently challenged (papers in Price ef al. 1984; Strong
et al. 1984; Diamond & Case 1986; Kikkawa &
Anderson 1986; Gee & Giller 1987). Theory is well in
advance of empirical work largely because of the
practical problems of doing experimental work, espe-
cially at the level of the community. The list of
theories in need of experimental confirmation is long
(Karieva 1989) and the Ecotron can provide labora-
tory tests of several theories on this list (see Ecological
considerations below).

3. ECOLOGICAL CONSIDERATIONS

The species assemblages (communities) used in the
Ecotron are not intended to be exact analogues of any
particular natural system, but they are modelled
closely on temperate, British, early successional weedy
fields. Rather, the Ecotron constructs replicated com-
munities designed to contain a set of universal features
of terrestrial ecosystems, features known to be impor-
tant in governing ecosystem behaviour and dynamics.
Some examples are as follows; the list is illustrative,
not exhaustive.

(a) Leaf litter dynamics

The importance of leaf litter dynamics on the
chemical and physical environment of plants is well
documented (Facelli & Pickett 1991). Leaf litter has
important effects on community composition and
productivity (Monk & Gabrielson 1985; Fowler 1986,
1988; Knapp & Seastedt 1986; Carson & Peterson
1990). Temporal and spatial patterns of leaf litter
production are also known to affect the population
dynamics of simple communities (Bergelson 1990).

The mechanistic underpinnings of these effects on
community dynamics, however, have received less
attention. This is a difficult issue to address because of
the complexity of the leaf litter cycle. For example,
herbivores affect rates and quality of litter production
(Choudry 1988) while quantity and quality of litter
produced affects decomposer communities which in
turn affect rates of litter breakdown (Richards 1987).
Further, rates of litter breakdown affect plant popula-
tion and community dynamics (Carson & Peterson
1990; Facelli & Pickett 1991) which in turn affects
herbivore dynamics. Add to this picture predator—
prey dynamics among herbivores and their predators
and even a simple community becomes a complex
network of interacting entities that is difficult to study.
Each of these relationships, however, can be moni-
tored closely in the Ecotron. This close examination of
the various links in the cycles of leaf litter dynamics
will shed light on the mechanisms behind changes in
the composition of plant and animal communities
associated with leaf litter dynamics.

(b) Spatial distributions and population dynamics

The importance of spatial distributions of organisms
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to population and community dynamics has genera-
ted considerable empirical and theoretical work and
several recent volumes review this literature (Pickett
& White 1985; Shorrocks & Swingland 1990; Kolasa
& Pickett 1991). However, the way in which the
aggregation of individuals into subpopulations affects
population and community dynamics is still the
subject of much debate (reviewed in Chesson 1986,
1991). Differences among competing schools of theory
remain unresolved.

Within the Ecotron, seedling arrangements are
established according to specific spatial distributions
to create arrangements suitable for testing theory. We
can vary spatial distributions both within and among
plant species and examine the effects of this variation
within and among trophic levels. Plant spatial dyna-
mics are recorded by an overhead camera and pin
sampling methods. Changes in climatic, chemical,
hydric, faunal, and microbial conditions can be
monitored at a microscale level within chambers.
With this information the predictions of plant (see, for
example, Bergelson & Karieva 1987), plant-herbivore
(reviewed in Karieva 1986), and parasitoid-host
community dynamics (reviewed in Hassell & May
1989; Hassell e al. 1991; Pacala & Hassell 1991;
Stiling et al. 1992) in response to spatial distributions
can be directly tested.

(c) Food web structure

The analysis of patterns in food web architecture
has led to a number of predictions about community
assembly, stability and dynamics (see, for example,
Cohen 1989; Sugihara et al. 1989; Pimm 1982; Lawton
1989; Pimm et al. 1991; De Angelis 1992; Martinez
1992). Food webs, however, are difficult to manipu-
late and, in spite of considerable theoretical and
observational work, and considerable promise for the
utility of food web theory, little manipulative experi-
mental work has been done.

The Ecotron can provide several tests of food web
theory using assemblages of terrestrial organisms.
Ecotron food webs can also be used to test predictions
about ecosystem processes and food web architecture
(reviewed in DeAngelis 1992) through monitoring of
nutrient and energy dynamics.

(d) Biodiversity

The Ecotron will be useful for addressing several
issues in biodiversity (we use ‘biodiversity’ as conve-
nient shorthand for several interrelated phenomena,
including species richness, species evenness, trophic
diversity, lifestyle diversity, and phylogenetic diver-
sity). What governs the patterns that we see in
biodiversity? How critical is biodiversity for the stabi-
lity of communities and ecosystem processes? These
are major topics of basic and applied ecology (papers
in Wilson & Peter 1988; Hawksworth 1991; see also
Andow 1991; Ehrlich & Wilson 1991; Soulé 1991;
Groombridge 1992; Lawton & Brown 1993). The
issues surrounding the maintenance of biodiversity are
still unresolved in basic ecology (reviewed in Iwasa et
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al. 1993). The role of biotic diversity in ecosystem
processes, a potentially important issue in the face of
anthropogenic global change (see Global change
below), is still controversial. Three different views
exist: (i) the biocentric view (sensu Andrewartha &
Birch 1984) holds that the loss of each species
incrementally and predictably alters ecosystem pro-
cesses; (ii) the redundant-species view (sensu Lawton &
Brown 1993) holds that many species perform similar
roles in ecosystem processes providing that biomass is
maintained; and (iii) a third view holds that the effect
of loss of a species on ecosystem processes defies
reduction or easy generalization. Determining which
of these views better describes ecosystems will be
important for designing and implementing strategies
for conservation and management.

Biodiversity can be manipulated within or among
all trophic levels in the Ecotron. The effects of these
manipulations, and the effects of manipulations of
physical factors on biodiversity, can be readily con-
ducted in this system. Thus, the importance of
biodiversity to ecosystem stability, resilience and per-
formance can be directly tested.

(e) Global change

The rapidity of global climate change caused by
anthropogenic production of greenhouse gases has
caused considerable concern about how the biosphere
will respond (see, for example, papers in Houghton et
al. 1990 and in Woodward 1992). Global atmospheric
models vary considerably in the details of their
predictions of global temperature change (Goodes &
Palutikof 1992) and there is little consensus on global
hydrological changes (Rind et al. 1992). They agree,
however, that with the ‘business as usual’ scenario the
Earth’s temperature will indeed rise and that this rise
can have dramatic effects on global weather patterns,
natural ecosystem processes, agriculture and forestry.
These effects will in turn affect the political and
economical well-being of nations (Houghton et al.
1990; Rubin et al. 1992).

Ecological analyses of the consequences of global
change have been necessarily constrained by the
overwhelming complexity of the phenomenon. Mini-
mally, at least five interacting factors, COg, UV-B,
Hy0O, temperature and community composition, are
potentially important to global change. For example,
even at only three levels of each factor, this produces a
full experimental design involving 243 treatments plus
one control treatment! With a minimal replication of
two per treatment, a full experiment would require
488 experimental units. Most studies have therefore
been limited in the possibilities for experimental
design and set out to examine only one or two factors
(e.g. temperature alone (van Cleve ¢t al. 1983); COq
alone (Fajer ¢t al. 1989); COg and temperature (Idso et
al. 1987); COg and HyO (Bazzaz & Carlson 1984)).
The Ecotron, with only 16 chambers, is similarly
constrained to the manipulation of two or three
factors but stands out among other systems in that it
specifically focuses on community response and food
web architecture (see Ecological motivations, above).

Phal. Trans. R. Soc. Lond. B (1993)

The Ecotron is controlled in two blocks (although
the design allows adaptation to four) that can be each
independently programmed to produce different
atmospheric conditions. Constructing replicate com-
munities within these blocks allows experimental
examination of population and community theory
under the environmental conditions of global change.

4. BIOLOGICAL CONSIDERATIONS

The terrestrial communities used in the Ecotron are
constructed from species preadapted to conditions in
the chambers. Although these communities are artifi-
cial, they are modelled on real, early successional
communities and embody the essential features of
most communities: the species are found in similar
environments, overlap in resource use, and interact
with one another.

We chose communities that are not tightly coevol-
ved assemblages and unlikely ever to be at or near
equilibrium. This method of community construction
reflects current trends in contemporary ecology that
have shifted away from the paradigm that views
species assemblages as coevolved equilibrium commu-
nities (Caswell 1978; Murdoch 1979; Connell & Sousa
1983; Weins 1984; DeAngelis & Waterhouse 1987).
This choice of construction also reflects the fact that
most communities in northern temperate systems are
only recently derived since the last glaciation period
(see, for example, Davis 1986, 1988; Collinson & Scott
1987) and that pristine (i.e. undisturbed long enough
to potentially be near equilibrium) systems are rare in
the face of expanding human populations and the
disturbance this creates.

To amplify the effects of interactions and physical
conditions on community dynamics, the system will
primarily be run without seasons. Without seasons, all
organisms selected for use in the Ecotron reproduce
continuously at the environmental settings we have
chosen, allowing more generations than in seasonal
environments. The Ecotron functions like a biological
accelerator that allows a rapid expression of any
predicted effect of an experimentally manipulated
factor on community dynamics. Such experiments are
not possible in the field where the majority of habitats
are seasonal either in photoperiod, temperature or
rainfall. Seasonal environmental conditions, however,
can be readily created in the Ecotron should we wish
to focus more specifically on modelling seasonal
communities.

(a) Soil and soil fauna

The soil composition is 569, loam and 449, sand on
a 15 cm washed gravel base, all sterilized by methyl
bromylation before use. Microbial communities are
reintroduced by the addition of a soil wash, paper
filtered for the removal of larger organisms. In
preliminary experiments (Thompson et al. 1993), we
re-introduced soil microbes by burying a thin layer of
soil 15 cm down. Filtered soil-water provides a more
reliable method, reducing the risk of contamination by
soil animals. Nutrient levels are thus within a typical
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(Family, family that contains species; life form, summer or winter annual; canopy struct, ‘L’ if leafy species with
no basal rosette and leaves equal in length, ‘S’ if semi-rosette species with leafy stems but with large basal leaves
(Clapham et al. 1962); canopy height=1 if <100 mm, 2 if 101-299 mm, 3 if 300-599 mm, 4 if 600-999 mm, and
5 if 1000-3000 mm; max height, maximum height attained in the field; lat spread=1 if therophytes, 3 if
rhizomes/tussocks diameter 100-250 mm, and 4 if diameter 251-1000 mm; diam, stem diameter as measured
after one month in the field; pH, pH range in which the species is most widely distributed. Note these data were
largely compiled from Grime et al. (1988).)

canopy canopy max

family life form struct height  height diam/mm pH
Aphanes arvensis Rosacea winter/summer L 2 80 3 — —
Arabidopsis thaliana Cruciferae winter S 1 500 3 66 6.0-8.0
Capsella bursa-pastoris Cruciferae winter/summer S 1 400 4 163 >5.0
Cardamine hirsuta Cruciferae winter/summer S 2 300 1 — 7.0-8.0
Chenopodium album Chenopodiacae summer L 5 1000 4 67 —
Conyza canadensis Compositae summer L — 1000 — — —
Lamium purpureum Labiatae summer S 3 — 1 450 6.0-8.0
Poa annua Graminae winter/summer S 2 300 1 526 5.0-8.0
Senecio vulgaris Compositae winter/summer L 3 450 1 — >6.0
Sinapsis arvensis Cruciferae winter/summer S 3 750 1 240 >6.0
Sonchus oleraceus Compositae winter/summer S 5 1500 1 — >6.0
Spergula arvensis Caryophyllacea summer L 2 300 1 662 5.0-7.0
Stellaria media Caryophyllacea winter L 2 300 1 425 >5.0
Tripleurospermum inodorum  Compositae winter/summer S 3 600 1 — —
Veronica arvensis Scrophulariaceae  winter/summer S 1 250 1 200 6.0-8.0
Veronica persica Scrophulariaceae  winter/summer L 1 50 1 450 6.0-8.0
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range of field conditions, although plants experience
competition relatively quickly. The soil has an aver-
age pH of 6.4.

The soil fauna consists primarily of earthworms and
microarthropods. Earthworms were chosen as impor-
tant soil organisms for which a considerable amount
of biology is known (see, for example, Lee 1985).
Earthworms have large and complex effects on the
physical, chemical and biotic structure of soil (see, for
example, Russell 1973; Edwards & Lofty 1978;
review, Brown 1988) and are therefore necessary to
achieve proper leaf litter dynamics within the Eco-
tron. The earthworm assemblage includes both Lum-
bricus terrestris and Aporrectodea spp. (Thompson et al.
1993).

Microarthropods, such as mites and Collembola,
are important contributers to the decomposition of
litter and the cycling of nutrients in soil (see, for
example, Engelmann 1968; Heal & MacLean 1975;
Anderson & MacFadyen 1976; Hanlon & Anderson
1979; Swift et al. 1979; Usher et al. 1979; Seastedt
1984; Moore et al. 1988; Hagvar 1988). We chose
Collembola for their ease of culturing and known
importance in decomposition processes (Butcher et al.
1971; Hanlon & Anderson 1979; van Amelsvoort ¢f al.
1988; Leonard & Anderson 1991). Currently, we have
four species of Collembola, all decomposer species,
and a predatory mite (table 1) that were cultured
as contaminants from Ecotron soils in preliminary
experiments and are therefore known to survive and
reproduce in the Ecotron.

(b) Study organisms

(i) Plant-herbivore communities. The majority of

Phil. Trans. R. Soc. Lond. B (1993)

described animal species are herbivorous insects
(Strong et al. 1984). Historically (see, for example,
Hairston et al. 1960; Slobodkin e al. 1967) and to date
(see, for example, Sih et al. 1985; Hairston 1991; Sih
1991), plant-herbivore systems form the basis for
much of the conceptual synthesis in community
ecology. Experiments on these systems yield results
that apply to a vast number of organisms in the
terrestrial portion of the biosphere and an important
component of terrestrial ecosystem processes. From an
applied perspective, results from plant-herbivore sys-
tems apply directly to pest management in agro-
ecosystems and managed forests.

(i) Plants

We (D. Magda and L. J. Thompson) screened most
of the common British herbaceous annuals and
selected 16 plant species whose known biologies
indicated that they were pre-adapted to life in the
Ecotron (table 2). These criteria included nutrient,
pH, light, temperature, water and germination re-
quirements. In the interest of simplifying the system,
we elected not to use those plants that were obligate
outcrossers or had any special requirements for germi-
nation.

(ii) Animals: herbivores

These species were similarly selected based on pre-
adapted biologies suitable for the Ecotron. The herbi-
vores are two species of aphids, a dipteran leaf miner
and a white fly (table 1). These herbivores are well-
studied agricultural, horticultural and common green-
house pests and much of their biology is known (e.g.
for aphids (Dixon 1985); for leaf miners (Hespenheide
1991); for whiteflies (Gerling 1990; Byrne & Bellows
1991)).


http://rstb.royalsocietypublishing.org/

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rstb.royalsocietypublishing.org

186 J. H. Lawton and others  The Ecotron

Table 2. Communities of differing complexities

(This table lists the nested sets of species in four types of communities of differing complexity that can be used for
Ecotron experiments. Each set of species is included in the set beneath it. For example, all communities contain
the basal species Senecio vulgaris but only community IV contains Lamium purpurem.)

community plant spp. herbivores, predators soil fauna
I Senecio vulgaris leaf miner, earthworms,
Stellaria media Chromatomyia syngenesia Lumbricus terrestris
Aporrectodea spp.
leaf miner parasitoid, Collembola,
Diglyphus isaea Onchiurus sp.
snail, predatory mite
Helix aspersa
other mites
II (+1) Chenopodium album aphid, Collembola,
Spergula arvensis Myzus persicae Neelus sp.
aphid parasitoid,
Diaeretiella rapae
IIT (+1+11) Cardamine hirsuta aphid, Collembola,

Conyza canadensis
Sinapsis arvensis
Veronica persica

IV (+ 1+ 11+1II) Lamium purpureum
Aphanes arvensis
Arabidopsis thaliana
Capsella bursa-pastoris
Poa annua

Sonchus oleraceus
Tripleurospermum inodorum

Veronica arvensis

Brevicoryne brassicae Sminthurides sp.

aphid parasitoid,
Aphidius matricariae

Collembola,
Proisotoma sp.

white fly,
Trialeuroides vaporariorum

white fly parasitoid,
Encarsia _formosa

(iii) Animals: herbivore predators

Four species of parasitoids have been selected for
use in these experiments (table 1). Parasitoids are
similarly a diverse, well studied and important group
of predators (LaSalle & Gauld 1992; Godfray 1993).
The physical scale of the Ecotron communities pre-
cludes the use of larger herbivore—predator systems.

5. PHYSICAL CONSIDERATIONS
(a) Overview

Environmental chambers are frequently constructed
from the standpoint of electromechanical control over
physical conditions within the unit, independent of the
ecology of the organisms they contain. The Ecotron is
unique in that it is designed with the ecology of the
communities that will be maintained within it in
mind. Lighting, water, air flow, temperature, humi-
dity, and eventually uv-B and COs, are designed as an
integrated system with performance specifications
based on a consideration of the requirements of both
the plants and animals that will be housed within
the system. The following systematically reviews the
various design aspects of the Ecotron.

(b) Architecture

Figures 1-3 show the general architectural layout of
the Ecotron. Each chamber has a floor that averages

Phil. Trans. R. Soc. Lond. B (1993)

2mx2m and is 2 m high from floor to ceiling, which
is formed by the airtight, uv-transmitting, Perspex
window of the lamp housing. Insulated walls are
polystyrene-filled, polyester-coated, phytotoxin-free
steel cold room modules. Internal, similarly con-
structed side walls are demountable, which gives the
ability to enlarge the chambers, and the spatial scale
of communities within them, but at the cost of reduced
replication. Currently, the model ecosystems are
housed in 1 m? boxes, 40 cm deep with single drainage
ports located at the bottom of one side panel (figures 2
and 3).

(e) Airflow

Air (figure 3) enters the chamber from a perforated
duct beneath the floor of each chamber. The air rises
through a 2 mm mesh and then through the metal
gridded structural floor, and leaves through a
screened exit port in the top of the rear chamber wall.
Two air circulation fans with adjustable, double
directional diffusers are mounted on wall brackets on
the front and back walls of each chamber. These fans
mix chamber air and eliminate still-air patches. They
also cause plants to tremble as they do in the field
which is known to affect plant growth (Neel & Harris
1971; Jaffe Biro 1979; Grace et al. 1982; Van Gard-
ingen & Grace 1991). The velocity of air movement is
adjustable.

Chamber air pressure is slightly positive with
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Figure 2. Ecotron plan view. This figure illustrates the overall construction of units in two banks of eight chambers
each. The internal walls of each bank are demountable thereby allowing variation in unit dimensions. This feature
permits conducting experiments at different scales. Broken lines show hypothetical arrangement for the purposes of

illustration.

respect to air pressure of the lamp housings and air
external to the chambers. This assists in preventing
contaminants from entering the chamber.

Each bank of eight chambers has a separate,
overhead, central air handling unit which collects,
reconditions, exchanges a portion with the external

atmosphere, and recycles the air. On each 50 s cycle,
5%, of the 130 kg of air in each system of the air
handling wunit and its associated chambers is
exchanged with filtered outside air. This exchange
fraction is adjustable to 15%, at which point climate
control becomes difficult. This exchange is necessary

LAO LAI CAO
—<C N, W dm
i- \\\ *
LH \VLLLLE LA | e
Z;A-_-'A'*"E A= ?\fA_——":\—-\ ==/ J/ /
={ 7
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Figure 3. Single chamber diagram. Most of the features discussed in the text are illustrated in this diagram. APC,
airtight Perspex ceiling; CAI, chamber air inlet; CAO, chamber air outlet; D, door, insulated and with airtight
seals; DIL, demountable irrigation lance; DH, door handle; DWO, drainage water outlet; EC, ecosystem container;
ESU, electronic sensors unit; IW, insulated walls (shaded regions); LAI, lamp house air inlet; LAO, lamp house air
outlet; LH, lamp house with separate air flow for cooling; SCF, secondary circulation fan; SMF, stainless-steel mesh :
floor; W, window, shuttered and insulated; WII, water irrigation unit.
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Figure 4. Temperature, humidity, and light-intensity conditions in the Ecotron during an early experiment. This
figure shows how physical factors can be smoothly regulated by computer control.

to prevent buildups of contaminants. Purafil/activated
carbon contaminant and microscreen filters are being
added. Air cooling, heating, and relative humidity
adjustments are made within the central handling
units.

(d) Temperature

Thermal control of the environment is regulated by
air conditioners located in the central air handling
units. (The non-radiant load from the quartz-halogen
lamps is cooled separately by its own air circulation
facility.) Air enters each chamber at a controlled
temperature, regulated by computer control with
sensor input from two sensors per bank of chambers.
Individual chambers have sensors that monitor tem-
perature for information only. Temperature can be
held constant or cycled smoothly over daily or longer
time intervals. A typical cycle used in preliminary
experiments is shown in figure 4. The system can
deliver air temperatures in the range of 5°C to 30°C
dry bulb (£0.5°C) and be continuously varied as
required (figure 5).

(e) Humaidity

Humidity (or vapour pressure deficit) control takes
place in the central air-handling units and can be
smoothly varied and regulated by computer control as
required. Humidity is controlled on a per-bank basis.
Humidity is measured on entry to and exit from each
chamber. These measures can be used to estimate
whole-community evapotranspiration (a function of
the humidity difference between the supply air and
exit air) in the chambers. A typical cycle used in
preliminary experiments is shown in figure 4. The
system can deliver relative humidities in the chambers

Phil. Trans. R. Soc. Lond. B (1993)

varying between approximately 409, and 709,
(+5%), depending on temperature. The humidifiers
work by chilling the airstream to the dew point
associated with the required relative humidity, satu-
rating it with deionized water, then reheating to the
required ambient temperature. This method prevents
the circulating air from becoming supersaturated and
avoids condensation problems. A thermal wrap-
around circuit between chillers and reheaters ensures
energy efficiency (figure 5).

(f) Lighting

Several considerations were taken into account in
the design of the lighting system. Adequate lighting
had to provide suitable intensities, a balanced spec-
trum, and diurnal variation in radiation reasonably
comparable to natural daylight. Additional considera-
tions included ensuring a relatively constant red to
far-red radiation (R:FR) ratio during most daylight
hours (Holmes & McCartney 1976; Holmes & Smith
1977), but shifting this R:FR ratio during twilight
hours. It was also necessary to remove the 100 Hz
fluctuations in illumination due to alternating current
(ac) modulation that adversely affects arthropod
behaviour and ensure that light was evenly dispersed
throughout each chamber.

The Ecotron lighting system has been developed
with all of the above considerations in mind (figure 3).
The system consists of 60 low-voltage (50 W, 12V, 38
degree beam), Decostar™ quartz-halogen lamps with
integral dichroic reflectors. Because these lamps use
direct current (pc) they eliminate fluctuation/‘flicker’
problems due to Ac modulation. These incandescent
lamps have excellent spectral properties with respect
to their rR:FR ratio although they are somewhat
deficient in the blue end of the spectrum (figure 6).
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Figure 5. Psychrometer diagram of design performance specifications for the Ecotron. This figure illustrates the
engineered range of temperature and humidity conditions possible in the Ecotron (shown within the region bounded
by the solid line).
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Gradual brightening and dimming of dawn and dusk
is achieved by electronic control of the power supply
voltage. This produces an R:FR shift resembling that
which occurs during dawn and dusk. We intend to
augment the lighting with high-frequency uv-a and
blue/white fluorescents to correct for spectral deficien-
cies. The lamps are arranged in a regular pattern in

the ceiling of each chamber. They form a grid with a
20 cm separation between lamp centres allowing the
siting of fluorescent tubes between the rows. The
operating frequencies of the fuorescents are well above
the reception threshold of insects so fluorescent flicker
is not a problem.

Energy consumption and cost constraints prevented

100 —
&
g
= 1
= H
8 ;
K /i
E 001 ‘/?/ quartz halogen + UV Perspex
= .01 |- :
g / A/L/ daylight (overcast)

// :
0.0001 ! 1 ] | | | J
200 400 600 800
wavelength / nm

Figure 6. Spectral properties of Ecotron lighting. This figure shows the spectral output of a Decostar™ quartz-
halogen lamp at the voltage settings for the Ecotron (solid line). The actual light that reaches the ecosystem
container is filtered through a Perspex window and is illustrated by the broken line. A typical daylight spectral
reading for an overcast day for northern temperate regions is shown for comparison.

Phil. Trans. R. Soc. Lond. B (1993)


http://rstb.royalsocietypublishing.org/

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rstb.royalsocietypublishing.org

190 J. H. Lawton and others  The Ecotron
the implementation of a lighting system that could
achieve the intensity of full maximum sun light
(1000 Wm~2 in the 400-700 nm spectrum). To
remain within power and cost constraints, the maxi-
mum intensity of light in the Ecotron at the head of
the plant canopy was chosen to be 100 Wm~2
(photon  fluence =288 micromoles m~2572), This
intensity, however, is equivalent to normal average
daylight intensity for habitats in which these plants
are typically found (Kendrick & Kronenberg 1986) or
equivalent to daylight from overcast skies (Fitter &
Hay 1987). The light intensity is computer controlled
and can be smoothly varied between maximum
output and darkness to mimic natural diurnal cycles
(figure 4).

The lamps are situated 15 cm above a suspended
3 mm thick, uv-transmitting, Perspex window. This
window seals off the lamp housing from the experi-
mental chamber. The window consists of two panels,
each demountable from within the chamber for the
purposes of replacing spent lamps.

(g) Water

A reverse-osmosis deionizer supplies filtered water
at 601h~' to a 30001 storage tank. This water is
delivered to each chamber from an overhead, cen-
trally located, demountable, irrigation lance. This
lance produces a conical spray that mimics rainfall.
Unlike more conventional, ground-level, drip irriga-
tion systems, it delivers an even spread of water at a
uniform flow over the entire surface of the growth
area. Duration of rainfall is computer controlled and
can be varied as required. Intensity of rainfall is
manually controlled. Each bank of chambers has its
own water delivery pump with solenoid valves servic-
ing each individual chamber. See figure 3 for the
features discussed in this paragraph.

(h) Micro-environmental sensors

Each chamber growth area contains four sets of
micro-environmental sensors, one set per quadrant
(figure 3). Each set is mounted on rods that insert into
sockets implanted in the soil. This arrangement allows
easy removal and rearrangement of sensors whenever
the need arises. The sensors currently measure air
temperature and photosynthetically active radiation
(PAR) irradiance at different heights above the ground
surface. Additionally, each set includes a resistance-
based soil moisture sensor calibrated for soil matric
potential and a soil temperature sensor, both situated
10 cm below the soil surface. The soil temperature
sensor measures below-ground temperatures and
serves as a correction sensor for the soil-water sensor.

6. CURRENT AND FUTURE EXPERIMENTS

(a) Verifying ecosystem processes in the Ecotron

Having designed and built the Ecotron as a controlled
environment facility it was necessary to test the
electro-mechanical system and carry out biological

Phil. Trans. R. Soc. Lond. B (1993)

trials to verify that a functioning ecosystem could be
maintained. Between July 1991 and April 1992, a
preliminary experiment with fully operational electro-
mechanical and biological systems was conducted.
During this 9 month run, the facility proved to be
reliable and functional in all aspects. The Ecotron
maintained a controlled environment as designed and
the community in all chambers cycled through two to
four generations of plant growth.

These preliminary experiments in the Ecotron
focused on leaf litter dynamics as potentially the most
important factor in need of resolution. The impor-
tance of leaf litter community dynamics is not well
understood and is currently receiving considerable
attention (Sydes & Grime 1981a,b; Bergelson 1990;
Facelli & Carson 1990; Facelli & Pickett 1991;
Tilman & Wedin 1991). A simple detritivore and
plant community was established without herbivores
for these first experiments. The detritivore assemblage
consisted of earthworms, snails and Collembola, the
species of which are listed in table 1. The plant
communities consisted of Trifolium dubium, Senecio
vulgaris and Poa annua (see table 2 for description).
Treatments consisted of manipulating the detritivore
assemblage. These were: (i) with snails; (i) with
worms; (iii) with snails and worms; or (iv) with
neither species. A fifth treatment consisted of cutting
(into 2 cm pieces) and replacing Poa litter in some of
the snail and earthworm replicates to hasten the
cycling of leaf litter.

Results indicate that earthworms are important
organisms for obtaining successful litter dynamics.
Even in this ‘simple’ three-plant species system, how-
ever, complex interactions were apparent. Snails, for
example, particularly in the absence of earthworms,
reduced Trifolium abundance which resulted in
increased Poa productivity and the accumulation of
dead Poa (figure 7). The manual removal of Poa
(treatment 5) resulted in the emergence of a second
generation of Senecio. Additionally, earthworms had a
positive effect on the abundance of T7ifolium (figure
7); the mechanistic basis of this positive interaction
appeared to be that earthworm casts provided safe
sites for Trifolium establishment, whereas earthworm
presence decreased the abundance of Poa litter and
increased Trifolium nodulation. Full detail of these
experiments are reported in Thompson e/ al. (1993).

This brief synopsis of the experimental results serves
only to demonstrate that the Ecotron can maintain
plant and animal assemblages on a continuous basis if
leaf litter cycling can be successfully achieved. The
degree to which leaf litter dynamics is achieved has
complex and strong effects on the outcome of com-
munity dynamics.

(b) Ongoing and future experiments

The Ecotron is currently examining relationships
between biotic diversity, global change and ecosystem
processes. A total of 14 communities are in use, each
having plants plus herbivores, predators and soil
fauna as listed in table 1. Further planned experi-
ments which require the Ecotron to be modified for
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Figure 7. Plant dynamics in preliminary Ecotron experiment. Percent cover represents the percent of total area
occupied by Trifolium dubium, Poa annua, and P. annua litter under different treatments. Treatments illustrated
include worms and snails present, snails alone, worms alone, and control (without snails or worms). Results were
derived from the analysis of overhead photographs, and 959, confidence intervals for significant treatment
differences have been calculated for several points on the plot. These bars show distances curves must be separated
by to be statistically significantly different at the 0.05 level.
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work with enhanced COs and uv-B will explore
population and community responses to the interact-
ing effects of rising temperature, COg and uv-s.
Once sufficient experience is gained with the Eco-
tron, statistical issues surrounding ecological experi-
ments will be addressed. Replication of experiments at
different scales can be conducted by removing inter-
chamber partitions to create different size compart-
ments. Replication in time can be conducted by
repeating experiments that use soil and cultures of
plants, animals, and microbes generated and main-
tained at different times of the year. Biotic replication
can be conducted by repeating experiments with

Phil. Trans. R. Soc. Lond. B (1993)

similar trophic foodweb architectures but using dif-
ferent species. These kinds of replications, which are
generally lacking in most ecological studies, will
improve the robustness of our conclusions.

7. CONCLUDING REMARKS

The Ecotron aims to provide a ciF that can behave as
a model or analogue of the real world, both biotically
and abiotically. It is an experimental tool that fills the
gap between complex field ecosystems and simplified
computer models. It differs from most cEFs in that it is
able to maintain multi-trophic level, terrestrial com-
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munities over many months, through several genera-
tions of plants and animals, with replication, and at
different spatial scales.

From a basic research perspective, the Ecotron
provides a means for tackling the burgeoning accumu-
lation of untried ecological theories. Theories are often
too complex to be tested under field conditions, but
those with interesting or utilitarian predictions can be
selected for preliminary trials in the Ecotron, whose
aseasonal, rapid-turnover design allows relatively
rapid ecological assessment of the theory’s predictions.
Results from the Ecotron cannot replace field work;
rather, they provide guidance for future field work,
may provide insights into the mechanisms explaining
past results from field work, and are an essential half-
way house between the relative simplicity of mathe-
matical models and the full complexity of the field.

From conception through consultation, design, construction
and testing, major contributors include: Hector Cameron
Clark, John Innes Institute, C. A. Cornish and Associates
(architects), Project Design Partnership, Andrew-Reid-
Robert Blowers Partnership (consultant engineers), Harry
Russell Limited (builders and contractors), Drake and Scull
Engineering Ltd, and Brunel Institute of Biotechnology.
Additionally, C. Speed, R. Jones, J. Radley, S. Williamson,
A. Hawkins, D. Brunskill and M. Barwise served in the
technical maintenance and development of the Ecotron
facility. We also thank D. Tilman, P. Grime, and many
colleagues at Silwood Park, Imperial College, and else-
where, for their advice. We are grateful to two anonymous
referees for helpful comments. The facility was made
possible by funding from the Natural Environment Research
Council to build, equip, and staff an Interdisciplinary
Research Centre for Population Biology, and by its host,
Imperial College of Science, Technology and Medicine.
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Figure 1. The Ecotron. Anticlockwise, from top, left; view of one bank of Ecotron units; view of vegetation in an
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